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SUMMARY

A simple approximate method is given for the calculation of
igentropic irrotational flows past symuetrical airfoils, including
mixed subsonic-supersonic flows. The method is based on the cholce
of suitable valuss for the streamline curvature in the flow field
and subsequent integration of the equatlons of motion. The method
yields limiting solutlons for potential flow. The effect of circu-
latlion is conslidered.

A comparison of derived velocity dlstributions with existing
resulte that are based on calculation to the third order in the
thickness ratio indicates satisfactory agreement. The resulis are
also presented in the form of a set of compressibility correction
rules that lie between the Prendtl-Glauert rule and the von Kdrmdn-
Tesien rule (approximately). The different rules correspond to

different values of & locel shape parameter adYCa, in which Y 1=

the ordinate and Cg 1s the curvature at a polnt on an airfoil.

Bodies of revolubtion, completely supersonic flows, and the signif-

icance of the limiting solutions for potential flow are also briefly
discugsed. =

INTRODUCTION

The problem of calculating compressible potential flows past
aerodynamic shapes will be considered in this paper by the following
method: An assumpblon is made as to the variation of the curvature
of the streamlines in the flow field and the equatilons of motion,
expressed in terms of the strsamline curvature, are thersupon
integrated.

Thig basic method of calculating £luid flows is not new. It
has besen described in reference 1 for use in calculating pressure
distribubions on closely spaced airfolls in cascade. More recently
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the method was applied to the compressible flow past an isclated
airfoil and to the incompressible flow past a symmetrical alrfoil
in a closed channel. The results of reference 2 are compared with
thoge of the present paper. '

The msthod 1s applied to lsolated alrfolls and the results
are compared with those of references 3 and 4. The limiting solu-
tion for potential flow by thils method is identified with the
"limiting line" phenomenon (reference 5) and discussed in relation
to the flow through a converging-diverging chepnel. Applicaticn of
the method to bodies of revolution is indicated.

THEQRY FOR SYMMETRICAL AIKFOILS

The flows calculated in this paper ars of the steady, continuous,
igentropic, irrotational type. (See fig. 1.) The equations of
motion are considered in the following form: .

Equation of irrotationality (reference 6, p. 43):

X iov=0 _ . (1)

Equation of comtinulty of mass flow:

)
PoVodn = pvdn ' (2)
0 0

Bernoulll's equation and eguation of state for isentropic flow:

1
2 ] 7-1
..9.: ..E.. = ..'Z..__].'. 2 ——
S () 8

v velocity at a point P of flow field ' -

where
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n distance measuvred along potential line from airfoil (streamline)
to point P on streamline in flow fisld

n, perpendicular distance between same two streamlines in free
stream

C curvature of streamline at point P, positive when streamline
1s convex in positive n direction. (C is the reciprocal
of the radius of curvature.)

fa} density

je! pressure

Y4 ratio of specific heats

M ° Mach number

The subscript o denotes free-gtream conditions.

Consider the symmetrical flow past a syrmetrical airfoll section
(fig. 1). The potential lines of the flow pattern are assumed
straight and perpendicular to the free-stream direction, or x-direction,
thereby relaxing the condition of orthogonality between stream and
potential lines. This assumption is exactly satisfied at the mid-
chord statlon of the section if the section has fore-and-aft symmetry
with respect to the mid-chord station. The assumption, in effect,
renders the analysis for one chordwlse station independent of that
for another. '

The element of length dn in equations (1) and (2) is therefore
replaced by the slement of length dy in the y-direction and equa-~
tions (1) and (2) are written, respectively:

&y = - 5¢ (4)
Yo A
| d e X

y = — = dy (s)
Jo Y Po Yo : -

The differentials in equations (4) and (5) are understood to be

taken in the y-direction et constant =x. The lower limits of inbe-
gration in equation (2) are on the streamline that coincides with the
alrfoll contour. The corresponding lowor limits in equation (5) are
therefore O and Y, respoctively, whore Y 1is the airfoil ordinste,
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a function of—the chordwlse locatlon x. The upper limits of inte-
gration in equation (5) are on a streamline that becomps parallel
to the x-axls at infinity; that is:

lim y = ¥o

Ve

Hence, the continuity condition (5) which for finite ¥y, ¥y, may
be written

(Y ~y ,""YO
40 .Y Po Vo JY

becomss in the limit a8 y—o

~on

ya| [0 . )dy (6)

vy Po¥o

Without loss of generality, the free-stream density p, &and
velocity v, are hercinafter comsidored as unity (or what is the
gsame, p and v are wriltten in place of p/po and v vo, res ec—
+ively) Corbination of tho approximate lrrotational condition

and the approximate continuity condition (6) yields

.'V
Y = 1, —-——-(pg;l) av (1)

in vhich the lower limit of integration, unity, is the freeo-ptream
velocity at ¥y =, and the uppor limit V, correspdiding to tho-
alrfoll ordinate Y, 1s the unknown desired volocity at the alrfoll.

A stresmline curvature function is now to be chosen. It muat—
satiefy the boundary conditions of known airfoll curvature C, at
the surface of the airfolil and zero curvaturc at infinity. For
convenlence, in the integration of equation (7), the curvature C 1is
choson a8 a function not of the coordinates x, y of tho flow field
diroctly but of tho velocity v(x, y). Tho function choson is

C=Cy G%)n (8)

in which tho airfoll curvature Cg, +tho unknown alrfoll velocity
V, and the parameter 1 (which will be discusecd lator) aro func-
tions only of chordwise location x, honce are constant as far as
tho integration in equation (7) is concorncd.
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The veloclty v 1in the flow fleld 1s obtained by substitution
of equation (8) into equation (4) and integration (at constant x),

o, _ _ - Y av
1= oo Lv(v-l)n (9)

The gtreamline curvature function C(y) determined by equations (8)
and (9) varies momotonically, as y increases at constant x, from
the value Cp, at the ailrfoil where y = Y to the asymptotic value
zero at y = o, The manner of thls varistion depends on the known

alrfoll shape parameter TYCp, the airfoil velocity V, and the
paraemeter 1.

HiId

The alrfoil velocity V is given in terms of the alrfoll shape
paramneter TYC,, +the free-stream Mach number M,, and the param-
eter 7 by eaquaticns (7), (3), and (8), which yleld:

1
rV vl - ZEm2 (v2-1)] »l_1
= (v-1)7 [ 2
¥Cq = (V-1) . e av (10)

The paramster 17 1s limited in 1ts possible range of values by
the conditions that must be satisfied infinitely far from thse air-
foil, that'is, as v—l. These conditions are:

(a) The curvature C—0O.
(b) The distance F—o.

(¢) The continuity integral (equation (10)) is finite. Condi-
tion (a) requires, by equetion (8), that O<n<ew. Condition (b)
requires that the integral in equation (9) diverge as the upper
limit v—l, which it does for 1<mn<w, Condition (c) requires
that the integral in equation (10) converge at the lower limit, which
it does for -=<N<2. All three conditions thersfore limit the
pernmissible range of 1 to

1<1n<2 (11)

Equation (10) and condition (11) represent the basic result of

the present method. The velocity V at a point on the surface of &

symmetrical airfoil at a given subsonic free-stream Mach number My
is obtained by assuming that the lmown data are the shape. param-
etor YOy &and the incompressible, or low-speod, veloclty V; at
that point on the airfoil. Theo parameter 1 is first obteined from
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equation (10) with My =0 and V = Vy. It will appear from later
applications that the vealue of n thus determired falls within the .
renge glven by expression (11) over the reglon of the airfoil of )
groatest interest. With this value of 1, eguaticn (LO) then gives
the velocity V at the point under congideration for the deslired
Mach number Mg. _ -

The main uncertainty of the present method is represcnted by
the chosen curvature function given in eguation (8). The approxi-
mation involved in the use of this funotion has boon minimized by
tho method just described of fixing the raremeters V and %, By
this method the streamling-curvabure function satisfies an approxi-
mete form of the equations of motion (eguation (10)) and yields the
known exact value of the airfoil veloclty in the incompressible case.
Furthermore, the curvature functlon exactly satlafles the boundary
conditione of end values Cg and O and varles between these end
values in the correct general manner (for stations near the maxirmm
veloclity station), namely, monotonically.

As a further conditlon on the chosen curvature function, the
final solution given by ecuation (10) should reduce to the Prandtl- -
Glauert rule for smsll disturbance of the free stream. Thus, neg-
lectling powers of wv-1 and V-1 equal to or higher than the second,
equation (10) reduces to L
FV‘V‘@.~ L M2 (v41)(v-1) - ...J_— 1
YCq = (v-1)" = - e v

J1 V(T-l)n

(v-1)" ™ (v-1)(1-Mo?) .
1 (v-l)T]

- N
(1M 2 ) (v-1)"1 f (v-1)¥" ay
1 .

or, integrating and solving for V-1,

W REY ) (12)
Vl-MO . -
Bquation (12) shows thet, 1f 7 1is adjusted to give the correct
value of V-1 for. M, =0, or - *

Vi-l = /2-1y¥Ca (13)
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then the compressible value for any subsonic M, is given by

Vi1 N
Vol = — (14)

WVL-M2
which is the Prandtl-Glauert rule.

The foregoing considerations indicate that the resulis should
not be critical with reapect to cholce of form of curvature function.
A pomewhat different foim of curvature funciion satisfying all the
foregoing conditions is

|
logeg v
C = Cg (i?g,'e'—v) (15)
Comparative results based on this function will be discussed later.

The basic relation (10) connecting the velocity V (expressed
as alrfoll velocity increment V-1) at a point on a symmetrical
airfoil, the alrfoil cuwrvature parameter ,/YC, at the same point,
and various free-stream Mach number M, is shown graphically in
figures 2, 3, and 4 for ¢ = l.4. The numerical data from which
these curves were plotted are given in tables I and II. Included
in tables I and IT are some corresponding computations based on the
curvature function (15). The integral in equation (10) was evaluated
by Simpson’s rule and checked by the closed-form result obtainable
in the case 1 = 1. The velocity Increment above free-stream veloclty
V-1 was plotted ageinst VQCa, hereinafter called the curvature
paremeter, rather than against IYCg because A/YCg 18 proportional
to the thickmess ratic of the airfoil (see, for example, equation (19))
and V-1 1is therefore approximately linear with respect to this.
quantity for small values (equation (12)).

Figures 3(a) to 3(h) correspond to positive velocity increments
above free-stream velocity, that is, evaluation of equation (10) for
V>1. Figures 4(a) to 4(h) correspond to negative veloclty increments
(V<l) such as produced on surfaces of negative curvature and ordinate
(hence the negative gign attached to A/YCa). In this case tho curva-
ture function, instead of the ome given by equation (8), 1s properly
taken as

i (l_-_\:‘”
© =0 \1i7)

vhich allows equation (i0) to be ovaluabtod without ambiguity as
regards the terms to the power 7. The curves of noegative velocity
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incroment (fige. 4{z) to 4(h)) may be rogarded as conblnuations of
tho zoggesponding curvos of positive volocity inocremeont (figs. 3(a)
to 3(h}). ‘

It is of intorest to note that a perameter eguivalent to the

rerameter ,Jfﬁg‘ was derived by the authors of reference 8 from &
dimensgional consideration of equation (4) and used to correlate
critical Mach number data for variocus symmetrical airfoll sectlons,

APPTICATION AND RESULTS
Kaplan Section —

Kaplan (reference 3) has calculated the compressible-flow zero-
lift velocity digtribution for a partioular family of symmetrical
alrfolls. The method used was an extension of the Ackeret method
vherein the potential funchtion les expressed as a power seriss in the
thickness ratio of the section. The corresponding series for the
veloclty distribution was evaluated tuv the term in the third nower
of the thickness ratio. A limiting value of free-stream Mach number
wag found, for a given thicknoss ratvio, above whlch the terms of the
power serles that were calculated (the first three) indlcated a
provable failure of the series to converge., This free-stream Mach
number was presumed to constitute an upper limit for the existence
of a continucus potential flow, ’ :

The method of the prosent analysis was tested by determining the
veloclty distributions for the Kaplan section from figures 2, 3,
end 4 (drawn to a scale commensurate with the proecision of the data
of .tables I and II). 4As an example of the proceduro uséd, the
veloclty ilncrement -V~-1 for the mid-chord location x = 0 of the
Kaplan section of thickness ratio 0.10 was obtalnecd as follows. The

section ordinates and corresponding curvature parameter AV?EE are

glven in figure 5. The lncompressible veloclty distribution V4-1,
obtained by conformal mapping, is shown in figure 6 (Mg = 0). At

x = 0 the values +~Y¥Cq = 0,1925 and Vi-1l = 0,1667 from flgurcs 5
and 6, respoctively, correspond inm figure 3(a) to an_interpolated
value of 17 = 1.297. TFor these valucs of 7 ‘and A/ICz , tho
volocity increments V-1 for values of of 0.5, 0.7, 0.8, .85,
and 0.9 were interpolated from figures 3(c), 3(e), 3(f), 3(g),

and S(h), rogpectivoly., Veloclty incroments were obtained in this
manner in the chordwise rango 0<x<0,616. In the chordwiso range
0.616<x<1.0, the values of +/¥Cs are indicated in figurc 5 aa
imaginary, resulting from a positive ordlnate and a negatlve curvaturo.
The theory presented, based on the curvaturo functienm of oeguation (8),
cennot handle such values of tho curvabturc parameter. Approximate
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conpressible velncity increments were cbbtained in thils chordwise
rangs by first noting that the parameter m increased toward the
value 2.0 with increass in chordwise distance from the center

(fig. 5). DNow the limiting value 17 = 2.0 correspconds to the
Prendtl-Glauert rule, as will be shown wnder COMPRESSIBILITY CORREC-
TION RULLS. In the range 0.616<x<1.0; therefore, the compress-
ibie veloclty Increments were calculated from the incompressible
values by equation (14).

The velocity distributions thus obtained fox the Kaplan section
of thickness ratic 0.10 are shown In figure 6. The disgtribubions for
Mg = 0,85 and My = 0.9 dJdo not extend all the way to the mld-chord
location but come to an end (with infinite slope) at the chordwise
locaticne x = 0,145 and 0.390; respectively. The imuediate reason
for this behevior im evident from figure 2. For example, at the
limiting locatlon x = 0.145 for Mgy = 0.85, +the value of 71 was
1,312 (fig. 5). On the set of basic curves For M = 1,312 and
similar in appearance to figure 2, & vertlcal line drawn at
A'¥Cg = 0.181 corresponding o x = 0.145 would be tangent to the
Mg = 0.85 curve, at which point the velocity increment V-1 would
be 0.550. No solution exists at this value of ,IC, for My higher
than 0.85; or, for fixed My = 0,85, mno &solution exists for higher
values of 4/¥Cz such as correspond to chordwose locations closer to
mid-shord than x = 0.145. The points of infinite slope on the basic
curves of figure 2 corrvespond to a limiting solution for potential
flow by the present method. This phenomenon, hersinafter called the
"potential limit phencmenon," is discussed in appendix A.

The potential limit points for the Kaplan 10-percent section at
Mo = 0.85 and 0.9 were actually obtained from accurately determined
plota of the infinite slope loci of figure 3. These plots are given
in figure 7. The vacuim~line boundary curve In figure 5 corresponds
to P/Po = 0 in equation (3). The intersection of the curve of 1

against /Y0, for the Kaplan 10-percent section (fig. 5), with, for
exemple, the My = 0.85 conbtour in figure 7(a) detormined the poten-
tial limit values of 7n and /¥C, ; Hhence by figure 5 determined
the chordwise location &t which & potential limit voint existed for
M, = 0.85. The notential limit value of n then determined the
potential limit V-1 by figure 7(b). The free-stream Mach number
at which the mid-chord location x = 0 1is & potential limit point,
that 1s, the lowest My, at which a potential limlt occurs, is
indicated by point A in figuro 7(a). By interpolation this limit
value of M, 1ip ostimated as 0,943 and the corresponding V-1

(fig. 7(b)) as 0.573. For comparison, the lower critical Mach
number (the lowest freo-gtream Mach nuuber at which sonic velocity
occurs on the airfoil) was determined as Q.748.
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The wvelocibty distributlon at the lowest potential limit Mach
number, obtalned by interpolation from the other velooity distribu-
tions, is shown in figure 6. The velocity gradient at mid-chord
apnears to be finite and different from zero. The reason for this
behavior can be seen from the expression for the velocity gradient

av av d{?‘;' av dn _ (16)

dx a dx on dx

in which the first partial derlvative is taken at constant n and
the second at constant ICq . (The acceleration of the fluid along
the surface g of the airfoll is V %I. Hence, the following dis-

cussion applies also to the fluid acceleration ) At a potentlal
limit point both 3V/3yYCq end 3V/3n are 1nfinite (fig 2). If

dﬂYC /dx and dn/dx are not zero at the chordwise station corre-
sponding to a potential limit point, the velocity gradlent— dv/dx 1is
infinite there, as 1s the case with the velocity distributions for

Mo = 0.85 ‘and 0.9 in figure 6. If &f¥Ca/4x and dn/dx are zero,
which 18 the case at the mid-chord station of the Kaplan l0-percent
section, the occurrence of a potential limit at this point leads to
an indeterminate expression for the velocity gradient in equation (18).
Closer analytical and graphical examination indicates the finite
gradient shown In filgure 6 (hence, a finitely discontinuous change in
fluid acceleration-across the mid-chord station).

The lowest potential limit wvalues of My, the corresponding
values at mid-chord of V-1, and the local Mach number M for’
symretrical sections of three thickness ratics (t = 0.05, 0.10, and
0.20) were computed. The value of M was Obtained by cowbining
Bernoulli's equation in the form of equation (3) and in the form

7-1
= Y=l . 2
1+ 5=M -
<i?:> = 21 . (17)
1+ Z%— M2
resulting in . '
v
M = Mo - Qe

4/1 - L2 M2 (vE-1)

The values are listed in the following taeble and compared with values
obtained by Kaplan in reference 5:
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Curvature method Kaplan method
Mo V-1 M My V-1 M

po

0.0 0.898{0.324|1.265}0,890{0.249]1.164
.10 .843] .573|1.491] .833] .456]1.320
200 .76311.200{2.257| .743| .864|1.625

The limiting values of M, by the two methods sgree fairly closely;
the values of V-1, hence also M, less so. The less satisfactory
agreement of V-1 1s to be expected from Tthe rapldity with which
V-1 varies with Mg 1n the neighborhood of the potenbtial Limit
solution (fig. 6).

The comparison of the welocity distributions for the 1l0-percent
thickness section by the two methods is given in figure 8. The
velocity distributions for Mg = 0.75 (fig. 8(b)) and 0.83 (fig. 8(c))
were obtalned by interpolation from cross plots of the velocity dis-
tributions of figure 6, guided by the vpotential limit poinbs previ-
ously determined. In the region of greatest interest on the contour,
namely the supersonic¢ reglon given approximately et M, = 0.83 by
O0<x<0.4, the velocity by the Kaplan method increases with My at
a greater rate than the velocity by the curvature method. A conven-
ient criterion of the accuracy of velocity distributions in local
supersonic regions has been pointed out by Tsien and FejJer, namely,
if a velocity distribution indicates a local supersonic region, a
velocity distribution can be derived in this region that must be
groater than the original velocity dlstribution; the difference
between the two distributions decreasing as the extent of the local
supersonic region increases. This greater veloclity distribution
for the supersonic region is the well-known Prandtl-Meyer solution
for the flow over a curved surface (reference 8(a)). The Prandtl-
Meyer velocity distribution extends, in the case considered here,
from the chordwise location for a local Mach number M = 1 %o the
mid-chord locetion. The Prandtl-Meyer solubion is obtained from
the change in slope of the airfoll surface A from the M =1
location to the point under consideration. This change in slope
exressed in degrees is equivalent to the pressure number P, which
is a function of the local (supersonic) Mach number M. From & plot
of slope € _of alrfoil surface against x, included in figure §,
and a table of P agsinst Mach angle, 1t i1s therefore a simple
matter to obtain the Prandtl-Meyer local Mach number distribution in
the supersonic region. The locel Mach number M and the free-stream
Mach number M, then determine the local velocity V by equa-
tion (18). If the pressure number P is defined in terms of the
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flow deflection angle A8 asm P = 1000 - Af@, +the pressurs nuwber
may be ccmputed by the methods of reference 8{a). The variation of
pregcure number and flow defiection angle with Mach angle lg shown
in the following table:

PRESSURE NUMBER AND MACH ANGLE IN PRANDIL-MEYEK

SOLUTION FOR SUPERSONIC FLOW

[y = 1.4]
Pressure |[Flow deflec~ | Mach angle
number, P |tion angle _ -1 1
77 a8 = 1000 < p | =BT E
(deg)
1000 0 90° 00*
999 1 670 43!
998 2 620 00!
997 3 580 10!
2986 4 440 12!
995 5 520 43'
994 6 500 36°
993 7 480 43!
992 8 470 03'
o9l "9 450 32! -
990 10 440 09'
989 - 1l 420 51
988 12 410 33.5!
987 13 400 32.5' -

The Prandtl-Meyer solutions: obtained in this manner for the
velocity distributions by the Eaplan method and by the curvature
method are shown in figure 8(c). The velocity distribution obtained
by the curvature method is evidently closer to the true distribution
than that of the Kaplan method in the local supersonic region for
My = 0.83, because the curvature velocity distribution 1s less and
the Kaplan veloclty distribution is greater than the corresponding
Prandtl-Meyer distribution. Application of the Prandtl-Meyer solution
to the potentlal limit velocity distribution by the curvature method
for My = 0.843 (fig. 8(d)) indicates a rapid descrease in validity
of the results by the curvature method for free-stream Mach numbers
cloge to.the lowest potentilal limit Mach numbér.
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From these and similar calculations for thickness ratio of
5 and 20 percent, 1t is concluded that the curvature method gives
results of at least the same order of accuracy as the Kaplen method
over approximately the middls half of the Kanlan section. Over the
reat of the gection the Kaplan method may well be more accurate.

Biconvex Section

The method of curvature may be expected to lhcrease in valldilty
with decrease in the variatlion of the curvature parameter JYCa
along the airfoil. The symmetrical biconvex section (ons formed of
two circular arcs) was considered as an example which is more favor-
able 1n this respect than the Kaplan section. The biconvex section
of 0.20 thickness ratio was analyzed for its incompressible velocity
distribution by conformal mepping. The curvature parameter Jica
was calculated from the relstion

A2 &

YC, = (13)
41.+ £2

in which Ypgx 1s the section ordinate at the mid-chord locatlon
end t 1is the thickness ratio, The section ordinates Y, the
glope 6, +the curvature parameter +/YCg, and the parameter 1,
determined as for the Kaplan 0.10 thickness ratio sectlon, are
given in figure 9. The velocity distributions for My, = 0, 0.5,
0.7, and 0.8 are given in figuvre 10. The curvature method cannot
handle velocities less than the free-stream value (unity), which
correspond to positive values of the curvature parameter; these
voelocities were obtained by the Prandtl-Glavert rule.

The lowest free-gtream Mach number Mgy for which a potential
limit occurs at mid-chord is 0.790. The corresponding values of
local velocity increment and local Msch number are 1.818 and 1.704,
respectively. The Prandtl-Meyer solution (fig. 10) indicates
inadequacy of the curvature method in this case at a free-stream
Mach number somewhat less than 0.8. The local velocity increments
of the biconvex section of thickness ratioc 0.20 are higher than
those of the Kaplan section of thickness ratio 0.10. The ratio of
the increments of the biconvex sectlon to those of the Kanlan section
of thickness ratio 0.10 are, in general, less than the ratlo of the
thicknesses of the two sections.

CONDITIONS IN FIELD OF AIRFOIL

The variation of streamline curvature and of local veloclty
with distence from the airfoil is given by equations (8) and (9).
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For the purpose of I1llustration, 1t will be sufficient first-to
make the simpler calculations corresponding to the curvature func-
tion (15) in place of (8). Eguations (4) and (15) yleld
(loge V)" a(loge v)
Ce, (logg v)®

dy =

which, after integratlon and adjustment of the consbant of integra-
tion to satisfy the boundary conditions, beconmes

log, V' [7log, vVI™1
To1+ B0 ' |[8 -1 (20)
X ¥C, (n-1) {\logg v
The curvature variation is given by equations (15) and (20). For
1 = 1 these equatlone are Indeterminate. In this case, equa-

tions (4) and (15) (or the well-known limiting form of equation (20))
yield . . _ .

log, V log, V
L2114+ —2 log, 2% ~ n=1 (21)
Y YC, log, v

The curvature and velocity variations given by equations (15),
(20), and (21) are shown in figure 1l and 12, resvectively, for
various valuea of n and M,. The valvue of YC, of 0.03704 chosen
for the calculation was that corresponding to the mid-chord location
of the 1l0-percent thick Kaplan section. The correspofiding values of
V for the various M, were those previously computed for the Kaplan
10-~-percent thick section. Although these values of V correspond
to only a single value of 1 based on the curvature function (8),
the use of these same values for various 1n and wilth the curvature
function (15) give the trend of curvature and velocity variatlons
sufficlently well for_the purpose of illustration. The curvature
and velocity variatlons of figures 1l and 12 show the expected
trend with free-stream Mach number M,, namely, a slower decrease
to free-stream conditions as My is increased. The limitation of
a single curvature function such as equation (8) or (15) is apparent
from figure 13, for it yields baslcally the same kind of curvature
variation in the supersonlc region as in the subsonic region. A
more rigorous analysls should take Into expliclt account the d&iffersnt
type of curvature veriatlion found in superscnic flows.

The extent of the local supersonic regions in the fleld of the
10-percent thick Kaplan sectlon was next calculated by the more
appropriate equation (S), using the data derived in connection with
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the velocity distributions. The results are shown in figure,l4, in
which the local Mach mumber M = 1 boundary is plotted for M, = 0.75,
0.8, 0.83, and 0.843 in terms of alrfoll semichord as unit dletance.

The rapid Increase in lateral extent of the supersonic region
with Increase of free-stresm Mach number, particularly near the
potential limit, 1Is apparent in figure 14. At the potential limit
My = 0.843, the local supersonic reglon extends laterally into the
flow field & distance of about 1 chord.

The finite nonzero slope at x = 0 of the sonic boundary at the
potential limit should also be noted. This finite slope is associlated
with the finite velocity gradient at the surface of the Kaplan section
previously diascussed. It appears from equation (9) that the slope of
a constant velocity (kence, for given My, constent M) boundary
will be associated with the surface velocity gradlent at the same
value of x in being finite or infinite. Henceé, if the lowest poten-
tlal limit solubtion occurs at a point on a symmetrical airfoll at
which d+/¥0,/dx, dn/dx are not zero, then the consequent infinite
volocity gradient at that point on the surface will cause a cusp in
the M = 1 boundary in the field. This cusp (the possibility of which
was suggested by L. Richard Turner of the NACA Cleveland staff) smounts
to an envelope of the Mach lines in the (supersonic) neighborhood.
This behavior is in agreement with a known property of potential limit
solutions, namgly, that a potential limit point in a flow field lles
on an envelope of Mach lines (refersnce 5).

AY

CIRCUTLATORY FLOW PAST CIRCUIAR ARC MEAN CAMBER LINE

The curvature method was next applied to the calculation of the
type of velocity distribution that produces "design" 1lift, that is,
1ift without a velocity peak near the nose of the airfoill. The
clrculal arc camber line at zero angle of attack was chosen for this
calculation in order that a comparison enalogous to that for the
Kaplan section could be made (reference 4). The camber ratio assumed
was 4 percent, corresponding to an incompressible design lift coef-
ficient of 0.520. '

A difficulty of principle arises in obtaining the curvature
parameter AfYCg for the circulsr arc section. The ordinate Y as
developed in the curvature method is actually the component in the
y-direction of the distance between a point on the airfoil contour
and g point on the airfoill streamline Infinitely far from the airfoil
(the airfoil streemline is the streamline that includes the airfoll
contour). In the case of the symmetrical airfoil, this projected
distance is the airfoll ordinate as measured from the chord lins.
When 1lift 1s produced, however, a point on the airfoil streamline
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infinitely far from the airfoil in the x-direction is also infinitely
far from the alrfoll in the y-directlon. Neverthelegs, inasmuch as
the slope dy/dx of the airfoil streamline for the circular arc
rapidly approaches zero with increasing distance from the circular
arc, it might be expected that the velocity dlstributlon on the
circular arc would not be critical with respect to the finiltely
distant point on the airfoill streamline from which the ordinate Y

is measured.

This situation was atudled by obtaining in the usual mannsr the
compressible veloclty increment at the mid-chord location, for ourva-
ture parameters ,/YC, corresponding to verious values of Y as
determined by points on the incompressible (M, = 0) airfoll stream-
line at various distences from the circular arc. Tho resulting
velocity increments (V-l)pgy are plotted for various Ffree-stream
Mach numbers M, in figure 15 against a quantity £ characterizing
the distance along the airfoll streamline. The quantlty f ie the
ratio in incompressible flow of the velocity decrement &t & poinbt -
on the alrfoil streamline to the maximum veloclty incremont-on the
circular arc. As the variable point on the airfoil streamlins
approaches the circular arc, tha value of 1n decreases from 1.28 at
f = 0.0032 "to the lower limiting valuve 1 at f = 0,0102 correspond. -
ing to a digtance of Q.87 chord from the extremity of the circular
arc, ‘At points on the streamline closer to the circular arc there
ls no value of n that ylelds the known Incompressible maximum
velocity increment for the corresponding value of 4Y¥Cg. Compressible
maximum velocity increments for these points were thereupon arbitrerily
obtained from figure 2 using 7 = 1.

Included in figure 15 are the meximum-veloocity increments
calculated from the formulas and constants given in refurence 4.
The waximum~velocity ilncrement by the curvature method is seen to
be always less than Kaplen's value and not to vary greatly with f£.

Guided by the results for the Kaplan lO~percent thick symmetrical-
section, which hdd about the same incompresslble maximum veloclty
increment as the 4~percent camber circuler arc mean line, and also
by the comparison with Kaplen's results in figure 15, the curvature
parametor ,VYCa for obtainling complete velocity distributions was
determined with respect to a reference point on the airfoil streamline
at which the incompressible velocity decrecment was 1 percent of the
meximum velocity increment (f = O. 01, 0.68 chord from leading edge).
The basic data are given in figure 16 and the resulting veloclty
distributions are compared with the corresponding results by the
Kaplen method in figure 17. The velocity distributions at My = 0.8
by both methods are lesss than the Prandtl—Meyer solution by about
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the same amount and no definite conclusion as to the comparative
accuracy of the two methods is indicated. The uncertainty introduced
into the results by the ambizuity of determination of the curvaturs
parameter A/ ¥Cg; could presumably be Turther resolved by additional
comparisons with resultes by other methods or by calculation of higher
gnproximations by use of the streamline curvaturs.

COMPRESSIBTILITY ~CORRECTION RULES

A compressibility-correction rule may he defined as a rule by
which the velocity or pressurs at a point of a compressible flow fleld
is expressed as a function only of the low-speed, or incompresseible,
velocity or pressure at that point and the free-stream Mach number.
Thus, the curves of figure 2 when cross-plotted agalnst My conatitute
a got of compressibility-correction rules for the velocity V. In
general, each value of 7 yilelds & compressibility-correction rule.
The rules for n = 1.0 and 71 = 1.8 are shown in figurs 18 1n terms
of the pressure coefficient C_, defined as

P’
2 oo
P- D
Cp =71 poz ='7° 2 (22)
> PoVo z Mo

in which p/py 18 given in terms of the velocity V by equation (3).
Also shown in figure 18 are the potential limit curves, obtained from
figure 7(d), the sonic line (M = 1 in equation (17)), and the abso-
lute limit or vacwum line (p/p, = O in equation (22)). The differ-
ence between the rules for different valuss of illustrate the
allowance for differendes in airfoll shape —52) which correspond
to the same low-spoed pressure coefficient. o

Fach compressibility-correction rule has 1ts own potential limit
curve. The limit curve for n = 1.8 intersects the vacuum line and
would extend to local velocities higher than that corresponding to
zero pressure, which of course is impossible, Hence, where a potentlal
limit curve intersects the vacuum line, the vacuum line becomes the
limit curve.

In figure 19 comparison of the compressibility correction rules
by the curvature method is made with the rules of

(a) Prandtl-Glauert, equation (14)

(b) Kaplan (reference 3) results for mid-chord location

log, v N
(c) The rule for 1 = 1.0 based on function (15), C = Cqy (————)
logy, V
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(&) Groene (reference 2)

(e) Garrick-Kaplan, "arithmetic-mean"” rule of referencs 10
(f) von Kérmén-Tsien, equation (62) of reference 9

Portions of the potential limit curve corresponding to each rule
ars indicated. ) B

The compresgsibility-correction curve corresponding to the
curvature function (15) rises somsowhat more steeply Than that corre-
sponding to equation (8) for the same value of n. It should be
noted that the two compressibility correction rulvs for n = 1 do
not indicate the difference in calculated pressure coefficlent at a
given point on an airfoil (givon /Y¥Cg)} as a result—of choice of
curvaturs function. In f e 139 the curve for survature func-
tlon (15) corresponds to 4/¥C, = 0.305 and tkat for durvature func-
tion (8) to 4¥Cy = 0.317. For a given value of 4/IC, end low-spoed
pregsure ccefflcient, the results by both curvaturo %unctions differ

negligidbly.

The Prandtl-Glausrt rule has been drawn in figure 19 to the
vacuuwm line (M = o) because this rule can bs rugarded as the limit
of the rules derivable by the present method as n approaches the
value 2.0. This fact becomes evident—from equation (10), in which,

- n approackes 2.0, the velocity V must approach unity in ordar
for the integral to converge. . The approxlmation leading to the
Prandtl-Glavert rule (equation (1l4)) cen therefore ve made. As 1
approaches £.0 the vacuum line becomes a greator and greater portion
of the complete potential limit curve (£ig. 18) until in the limit
the vacuum lins becomes the entire potemtial limit curve, (See
figs. 7(b) and 7(d).)

The Greens rule, on the other hand, can be regarded as the
limiting rule obtained by allow1ng n to approach zordo. For n = O,
equation (10) becomes

1

v 2
- 7-1
YC,, =U/q [? - Zgi'sz (vz-lj] dv - log, V (23)
1

= (V3 - 1) - log, Vy

This last equality, namely V as a functlon of V; and M,, is
Groene's rule. As has becn shown, the significance of 7 = O is
that the curvature. C becomes zero st a finlte distance from the
airfoil and remains zero for greater dlstances. Although this
circumstance might imply a severe limitation on the validlty of
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Greene's rule, this particular derivation is actually more restric-
tive than necessary for it leads not only to Greene's rule but to
the additional equation involving IC,. A more general discussion
of Greene's rule is glven in sppendix B.

In general, the compressibility-correction curves derived in
this paper lie between the Prandtl-Glauert curves on the one hand
and (approximetely) the von Kdrmin-Tsien curves on the other. It
may be emphasized here that the presentation of the present results
in the form of a set of compressibility correction rules does not
imply an equivalence of these results to a simple speed dlstortion
of the flow field in going from incompressible to compressible flows.
Evidently any derived set of compressible~-flow patterms for varlous
fres-gtream Mach numbers can be compared with the corresponding
incompressible~flow pattern by means of a set of compressibllity
correction riles. A simple speed distortion implies the exilstence
of only a single compressibility correction rule from which
compressible-flow boundary velocities are obtained from given
incompressible-flow boundary velocities regardless of the shape of
boundary that produces the incompressible-flow velocities. The
present results, however, yleld different compressible-flow veloci-
ties for the same incompressible velocities depending on the shape
of airfoil (4f¥C4) that produces the incompressible velocities.

SUPERSONIC FLOW

In completely supersonic lsentropic potentiel flow the same
equations of motion hold as in the subsonic case, namely, in the
form assumed in this paper, equationa (1), (2), and (3). The appli-
cation of these equations, however, to the calculation of the super-
sonic velocity distribution on airfoils is in certain respects 4if-
ferent from the subsonic calculation. The differences as well as
gimilarities will be illustrated by derivation of the linearized
(small perturbation) equation for the velocity distribution on an
arbitrary thin airfoil in supersonic potential flow. )

For small perturbation of the free stream the approximation for
the density ratio that led to equation (12) is

ov - 1 = (1-M2)(v-1) (24)

Equation (7) therefore becomes

v
Y = -(M,2-1) [ Sy_a_l_)_ av (25)
Jl
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The curveture C 1is by definition dB/de where s is the distance
along & gtreamline and B 18 the (positive clockwise) angle between
the stroamline and a fixed (say the free-stream) direction. Equa-
tion (25) may therefore be written -

8g .
Y = -(Moz-l)ﬁ (v-1) g'g s (26)

in which the path of integration is determined as follows: The
agsumption 1s made that at a point in the flow fleld apy field
quantity, such as v, dv/dB, or ds, is constant along a straight
line connecting the point with a point—on the airfoil &nd msking an
angle u with the free-stream direction. (See sketch.)

dy

A4

\'4

Completely supersonic potential flow -

By this assuuwption a correspondence is set up between points in the
Tield and points on the ailrfoll for which the integrand in equa-
tion (26) has the seme valus. Hence the original path of integra-
tion from infinity to a point on the airfoil in a direction normal
to the airfoll can be renlaced by a path along the airfoil itself,
from the leading edge to tho same point, at a distance- sy from the
leading edge (the contribution to the intemral from pointe upstream
of the leading edge 1is zero because for such pointe the straight
lins at angle p on which the field quantities are comstant does
not intersect the alrfoll and extends infinitely far ahoad of the
airfoil, where frec-stream conditions exist).
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Differentiating both sides of equation (28) with respect to the
distance sg &along the alrfoll contcur yields

Y (M 2-1)(v-1) & . 27
- = -0%P-1) (v-1) )
But ax_ = - B. Hence
dSa -
Fap y2a ] |
Inasmuch as all variables have been assumed to differ from their
free-stream values by small amounts, the gquotient vl can be set

equal to the derivative dv/df. Equation (28) therefore becomes

dv _ 1
Eéuim (29)

Finally the significance of the angle p 1is obtained from equa~
tions.(4) and (29), and the sketch of completely supersonic potential
flow,

tan H = g'-l = - dv = - g‘l
ds Cvds ap
=t ' - (30)
Moz-l :
or - . : - -
. 1
sin p = =~ 31)
k=i (

Hence p is the Mach angle and equation (29) can be written

%%:itanu - (32)

which (recalling that the Pres-stream velocity is unity) is the
baslc solution for linearized btwo-dimsnsional supersonic flow
(reference 8(b)). A4All the properties of linearized two-dimensional
supersonic flow can be deduced from the preceding derivation (these
properties were, of course, a guide in setting up the derivation).
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The fact that the linearized theory for completely supersonlc
flows relates streamline curvatures abt points connected by Mach
lines {characteristics) would -indicate that in obtaining higher
approximations to the flow pattern in large local or completely
supersonic regions the curvature function should properly be spec-
ified along Mach lines rather than along normals to the free-gtream
direction. This circumstance indicates a possible refinement of the
pregent treatment for mixed subsonic-supsrsonic flowa. Consider a
mixed subsonic-supersonic flow nattern calculated by the curvature
method. The curvature in the local supersonic region can be assumcd
constant (axd equal to the corresponding airfoil curvature) along
the characteristics emanating from the airfoil at the appropriate
local Mach angle. The curvature function thug determined is contlin-
uously Joined to the curvature function previously calculated at
the boundary of the -supersonic region., As a gulde in this process
the curvature of the stroamlines determined by the original calculatlon
could be used (this information would alsgo be of uge in determining
higher approximations throughout the entire flow fisld). The egua-
tions of motion (1), (2), and (3) ave thereupon integratvd, graph-
ically or otherwise. If the local supersonic region is small, this
procedure may not yield more accurate resulbs than the original
calculation. It may, however, yleld a closer ovaluatlon of the
accuracy of the original calculation than the Prandtl-Meyer solutilon
applied to the local supersonic reglon.

The preceding remarke algo meke evident the possible occurrence
of & curvature maximum sway from the alrfoil (in a directlon normal
to the free stream). Such a maximum will probably occur in a large
local pupersonic regilon when the point under consideratlon on the
airfoll is preceded along the alrfoil by points of greater airfoil
curvature. ' — -

BODIES OF REVOLUTION

The method given for the two-dimensional flow can bo applisd
similarly to the case of axially symmotric flow over a body of
revolution., Thus, if the symmetrical section (fig., 1) 1s considered
as a meridian sectlon of a body of revolution the conbinuiby con-
ditio? (equation (8)) bocomes (freec-stream velocity and density are
unity),

o -

Xz?.' (ev-1) yay (33)
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The irrotationality condition (equation (1)) and the Bernoulli-state
equation (3) remain unchanged. If the curvature function (8) is
assumed, substitution of equations (3), (4), and (9) into equa-

tion (33) yields an equation analogous to (10). From this equation
a set of basic curves analogous to those of figure 2 could be derived
by computation. (The computations would be lessened by use of the
curvature function (1S5) instead of (8) because equation (20) is
easier to evaluate than equation (9).)

It will be sufficient here to indicate the results in the case
of emall disturbance of the free stream, or wv——1l. In this case
equations (9) or (20) yisld

(v-1) _ [/v-n\1t
F-1-= Y6, (n-1) [<V-> '1] (3e)
Substitution of equations (24), (34), (4), and (8) into (33) gives
(v-1)2 [1 P ]: (2-n) ¥Cq (35)
YC, (3-27) (1-M32) 2

It may be shown as before that the parameter n 1s now restricted
to the range

1€ n< 1.5 - (38)

The parameter 1n can again be taken as the value that in equa-
tion (35) yields the exact (known) velocity increment for M, = O.

Equation (35) differs in form from the corresponding expression
for two-dimensional flow given in equation (12) by virtue of the
second term in the brackets. The effect of this term is to reduce
the velocity increment for a given M,, +that is, to reduce the
effect of speed on the local velocitles and pressures. For example,
the increase with free-stream Mach number My of the maximum velocity
increment on slender ellipsoids of revolution is by equation (35)
about 70 percent of the increase given by the Prandtl-Glauert rule.

If the curvature function is chosen as

o~ (3] (1)
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then with £ = 1 a basic equation the same as (10) 1s obtained,
YC
with the exceptlon that .:§ replaces Y¥Cqs on the loft-hand side.

Hence the same basilc computations ag already made for-the two-
dimensional case could be used here (with 1= 5 <2). Although a
more gredual rise of velocity lncrement—with Mach number 1s thus
obtained than for the same section in two-dimensional flow, the rise
is greater than given by the Prandtl-Glauert rule, The Prandtl-
Glavert rule ig, in fact, again the limiting rule for small disturb-
ances, It seems, however, that the Prandtl-Glauert rule may over-
egtimate the effect of subsonic compressibillity speeds on slender
bodies of revolution.

Porhaps the most reliable way of obtaining compressible velocity
distributions for bodiss of revolution by use of a single curvature
Punction is to use the function (37) with n and ¢ _adjusted in
pach case to satisfy both the known incomvressible value and the
compressible value for infinitegimally small disturbance of the
gtream, the compressible value being consldercd as known or ovtainable
from the general linsar-perturbation theory of compressible fluilds.
The permissible values of 71 and ¢ +that satisfy the required
conditions at infinity lie in the acute=angled sectors of the £
against 1n plane bounded by the lines n =1 and ¢ = 2n - 3.

SUMMARY OF RESULTS — -

The present study of compressible potential flows past aerc-
dynamle shapes indicates the following:

1. The mwethod presented for the calculation of compressible -flow
veloclty distributions yislds results for symmetrlicael sections in
satisfactory agreement with existing resuits based on” calculation to
the third order in the thicimess ratio, = - ~ -

2. The results can be presented in the form of a set of
compreaalbillty-correction rules that lle between the Prandtl-
Glavert rule and the von Kérmén-Tsien rule (approximately). The
different rulesg correspond to different values of a local shape
parameter zdiﬁa, in which ¥ 1s the ordinate and Cg, 18 the
curvature at a point on en alrfoil.

3. The effect of circulation at desigm lift conditionsa, that
1s, without velocity peaks, can ba taken Intc account.

4, Conditions in the field of the ailrfoll can be oalculated
aimply.
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5. The method given for two-dimensional f£low can be applied
alsc to bodiles of revolution.

6. The general method of using the streamline curvature appears
applicable to any subsonic or supersonic flow problem in which a
satisfactorily accurate estimate of the curvature of the streemlines
can be made in the portion of the flow field of interest.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohic, May 24, 19486,
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APPENDIX A

.THE POTENTTAL TIMITI PHENCMENCN AND THE ARALOGY
WITH FLOW THROUGH A CHANNEL

The points of infinite slope on the basic curves (fige. 2
and 3) have been seen to correspcnd to limiting solutilons for
potential flow by the presont curvature method. These points cor-
respond to points on an airfoll at which the 1ocal Mach number M
ls zreater then 1 and at whick the fluid acveloration is infinite
if 4/TC,/ds and dn/ds are not zero. Furthormore the M = 1
boundary in the flow field containa a cusp if the fluld at the
laterally corresponding polint on the airfoil has infinite accol-
eration., This cusp congbtitutes en envelors of the Mach iines in
the (suporsonic) neighborhood. These propcrties pormit identifi-
cation of the points in the flow fleld corresponding to polnts of
infinite slope on the b351c curvoe with points on tho llmiting line
of reference 5.

In tho determination of the essentlal reason for _the oexistence
of a limiting potential flow solution, as well as tho _significance
of the possibilities d&/¥Cz/de = dn/ds = O, tho analogy with the
flow through a converging diverging channcl is ilivmipating. Con-
pider first the one-dimensional flow through the channel The
cquation of continuity can be writton

pVA = 1 s (38)

in which A is the cross-sectional area of the channel and all
quantities arc expressed as fractions of thelr values at a referonco
station O upetrecm of tho minimum section, called tho chammel froo-
gtroam station. Egquation (38) yields with equation (3) a family

of curves of velocity V egalnst erea A with channel frec-siroam
Mach number M, as parameter (fig. 20). Theso curvos oxhibit
points of infinite slope analogous to those of figure 2. If for
the moment only subsonic flow in the channol 1s considsrod (branch
BC in fig. 20), thero exists at C a minimum channol area for
glven M, or for given channel area a meximm M, for contlnuous
one-dimensional flow. The {1uld acceloraticn along tho axis x of
the chamnel 1s -

Vi=V 3+ 5= : (39)
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in which, by equation (38), (18), and (3)

av \2 :
— = ——— 40
At a point of infinite slope in figure 20, dV/dA = =; hence the
fluild acceleration is infinite unless possibly dA/dx = 0, Ths
limiting solution occurs, by equation (40), at a local Mach number
of unity. Thus, by a one-dimensional argument independent of the
irrctationality condition a limiting solution analogous to that for
the isolated eirfoill has been derived. It may be noted that the
upper-branch solutions CD (fig. 20), as well as the upper-branch
solutions of the basic curvee (fig. 2), correapond to the over-
lapping supersonic flow patterns that have been obtalned by the
hodograph method. (See reference 1l1.)

The analogy between the charnnel and the isolated airfoll can
be made stlill closer by conslderation of the two-dimensional features
of the flow in the minimim section of the channel. As the channel
free-stream Mach number M, is increased by increasing the over-all
pressure difference across the channel through external means, the
maximm local Mach number at the wall increases at a greater rate.
For a sufficiently high but subsonic M,, local supersonic regions
appear in the neighborhood of the walls (fig. 21). This flow
pattern corresponds to the solution s trical with respect to the
y-axis studied by Meyer (reference 12), G. I. Taylor (reference 13),
and others. It is analogous to the continuous mixed subsonic-
supersonic flow pattern for isolated alrfoils. The one-dimensional
continuity treatment indicated an upper subsonic 1imit for M,.

The two-dimensional flow pattern for channels indlcates a similar
upper limit on My and, in addition, provides the desired insight
into the isolated airfoil cass.

The limit on M, comes about because the flow at station O
(fig. 21) must pass through the minimum section. The local mass
flow intemsity pv 1s, however, a maximm at a local Mach number
of unity and will be less than the flow intensity at the channel
freo-gtream station in portions of the local supersonic regilons AB
and PG, which increase as My 1is increased. When a further increase
in extent of the local supersonic regions would result in a decreased
mass flow through the minimum section from the cause Jjust indicated,

"then the mass flow has reached its maximum possible value and the
chemnel 1s said to be "choked."

The explanation for the limiting solutlon in the isolated air-
foil case is similarly formulated. Along the potential line AD
traversing the local supersonic region (fig. 1) the mass flow
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intensity ratio BE%— is a waximum at the sonic point C and less
oVo
than unity over a section AB Iin the supersonic region, When the
mags flow intensity, integrated over BD, produces an insufficient
mass flow to counterbalance the decreased contribution to the mass
flow across AB 1in accordance with the requirements of continuity
and isentropy (squation (6)), then the limit solution for point A
on the alrfoil has been reached. The flow field, though infinite
in extent, can under this condition be said to be choked. Evidently
a local supersonic region must exlst before the limiting velocity is
reached,

The esmentially one-dimensional continuity argument Just given
ls not entirely sufficient to prove the existence of a limit solution
in the two-dimensional case. Eguation (6) alone, for example, could
alweys be satisfied by a suitable choice of v(y); or large streanm-
line curvatures resulting in large flow deflections might set in at™
supercritical speeds, thus destroying the validity of equation (6).
These possibilities are eliminated by the irrotationality ocondition,
which controls and limits the lateral variation of velocity in the
flow fleld. Thus, the isolated alrfoil limiting solution is actually
produced by the combination of irrotationality, continuity, Bernoulli's
equation, equation of state, and boundary conditions in equation (10).
The condition of completely irrotational flow isg not, however, abso-
lutely nscessaxry for.a lilmit solution. Rotational flows characterized,
for example, by almost any function of v on the right=hend side of
equation (ls would yileld limit solubtions, at least for small values
of the function (rotation). The equations of motion in the Fform
anglyzed appesr, in fact, to offer a convenilent means of including
rotational effects and effects of changes in the equation of astate.

Finally, some remarks are made concerning the possible relation of
the actual shock wave on an airfoil in the mixed subsonic-supsersonic
(supercritical) flow rogime to the potential limit solution. As noted
in references 5 and 14, the observed shock on an alrfoil in the super-
critical flow regime sppears to be formed as a result of the ever-present—
rendom pressure disturbances, some of which travel upstream at relative
gonlc gpeed and plle up to form the downstream boundary, roughly speaking,
of the local supersonic region. In other words, shock would .not arise
in a completely steady flow; and an increase of free-stream Mach number
(a nonstsady effect) would presumably permit attainment of the potemtial-
limit solution. Although it seews possible that the potential-limit
golution might in some cases limit the local Mach number at which tho
shock stabilizes, the maximum local Mach numbers corresponding to the
potential limits of this paper are for the most part groater on normal
airfoilas than those at which the shock stabllizes, Hence, the actual
shock normally prevents the potential-limit—solution from being reached.
There appears to be no direct relation between the two phenomens.
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The question as to what would happen I1f the potential 1limit
solution could be attalned in some menner on an isolated airfoll
can pernaps best be answered by again considering the converging-
diverging channel, In the chamnel the limit solution can not only
be reached (point C 1n fig. 20) but the second solution (branch - CD)
can also exist, The mechenism that produces this second solutlon 1s
the over-all pressure difference across the chamnel, applied through
external means. This pressure difference, when sufficlently increased
causes the shock, which has formed in the local supersonic regions
in a manner similar to that on an isolated airfoll, to move down-
stream from ths minimm section as a more or less normal shock

spanning the chennel. The reglon of the chamnel between the minimum =~

section and the shock contalns the second solution. Thus, the

upper branch solution CD can exist as a continuation of the lower
branch solution BC with no shock in the neighborhood of the limit
solution, point C. The fluid acceleration of equation (39) is
finite at the limit point which occurs at ‘the minimum section

dA/dx = 0. In the isolated alrfoil case the analogous occurrence of
a potential limlt solution et a point where —EEEE-= %g = Q

(equation (25))} leads to the conjecture whether a similar transition
through' the potential limit golution could not be effected at such a
point. In normel isolated airfoll operation the only mechanism
avallable for increasing the local Mach number is to move ths airfoil
faster. The over-all ambient pressure remains atmospheric. The fact
that in the channel the necessarily asymmetrical boundary conditlons
of over-all pressure difference (the samo chammel area at beginning
and end of the channel is assumed) can produce an asymmetrical flow
pattern, containing a transition through the limit solution would
therefore indicate that on an isolated asirfoil subject to the
symmetrical boundary condition of constant atmospheric pressurc a
transition through the potential limit solution could not be affected.
Artificial means, however, such as the proper combimation of airfoll
shape and suction slot in the airfoil might "pull the shock through'
in a local region near the airfoil and thus effect a transition
through the potential limit solution to operation on an upper branch
of the basic curves, (fig. 3).
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APPENDIX B

THE COMPRESSIBILITY CORBECTION RULE OF GREENE

The compressibility correction rule of. Groerne (réFfersnce 2)
can be derlved as follows: TFor a fixed asirfoll ordinate Y, the
right-hand side of equation (7) may be writhten for both compressibls
and incompressible flows to yield the egquation

J 9_.—-dv= j Tlay, T (41)
R AL AR |

in which, for a given airfoil, bath this compressible and incompress-
ible curvature functions C and Ci satisfy the same boumdary
conditions. o - i - .

The Greene rule corresponds to the eqaation, eqaivalent to
equation (18) of reference 2:

rv -
} Q__.._ dv = f ‘V'1 L - 8Vy (42)
J1 ' '

~V
,‘ pdv = logg V = (Vy-1) ~ loge Vy (43)
J | _ S

For 7 = 1.4, the integral in equation (43) can be evaluated in
closed form. The result is:

- 7 _ .
| . : -T2,

| pdv =f [1 ~ 0.2 M2 (+2-1)1°° av
vl 1 . =

- S [ e -7 @) (44)
where
G (Mp) = M° - (45)

(1 + 0.2 M02)5
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F(¢)=Ei——%-§°&(oos¢cp+9c;osch+23)+srp - (46)

Vo2 Mo Cwn
V1 +0.2 M2

sin ¢ = V sin @,

gin @6 =

The functions G (My) and F (9) are plotted in figures 22 and 23,
respectively. :

Transition from equation (41) to (42} requires a certain corre-
svondeonce between the compressible curvature function C and the
Incompreseible curvature function C;. In order to sce this corre-
spondence, considor the integrands of oquetlion (41) plotted against
v and vy, respoctively (fig. 24(a)). A one-to-ono corrsspondence
between v and v; can evidently always bo established such that
the elemoental aress making up the integrals in equation (41) are
equal, ag indicated by the cross-hatched elemonte in figure 24(&),
thus,

) 1 . )
E%;E dv = L dvs ' T (49)

Aside from cases where a largs local supersonic region oxlste next

to the alrfoll, in which case it is posalble for the curvature to  _
have a maximum avay from the airfoll, as indicated by the dotted

line in figure Zé(b), the compressible curvature function C and

the Incompreesible curvature function Cy both start from the same.
value Cg at the airfoil and docreaso monotonically (for chordwise
stations near that of maximum velocity) to zerc at y = o or

v =vy = 1. Hence, a one-to-one correspondcnce botween v and vy
can be ostablished in figure 24(b) such that C = Gy at corrosponding
v and vi. If this one-to-ons correspondence is the sams as that

by which cquation (49) was obtainod from (41), the curvaturce functions
cancel out of equation (49), which can then be integrated to yleld
squation (42),

In general, the two correspondences Just discussed are not the
same, In thils case the correspondence in v . and vy leading to
equation (49) can bo regardad as rotained and a comprcsgible curva-
ture function agsumed that 1s obtalned by this correspondonce from
the incompressible curvature function (indicated by the dot-dash
line in figurc 24(b)). This procedure again yields equation (42)
from (48) by cancelation of. ¢ and Ci and integration. The com-
prossibls curvaiure function thug set up satisfies the boundary
conditions and constitutos the essential approximation of Greene's
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rule (in additlon to the neglect of the curvature of the potentlal
lines involved in equation (7)).

The potentlal limit curve corresponding to Greens's rule is
that for which

dv_ _
55!—1- = o (50)
or, by equatilon (49)
pY = L (51)
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TABLE I N
BASTIC CALCULATIONS BY CURVATURE NETHOD FOR POSITIVE VELOCITY INCREMENTS

Loge V 0.04 0.08 0.12 0.18 0,20 0.24 0,28 0,32 0,36 0.40 0.44
v-1 0,0408{0.0833{0,1275] 0,1735{0,2214} 0.27 0.3231 0,377} 0.4333 O. 4918] 0,5527
K ¥Ca
Curveture function, ¢ = C(H)n
[o] 1,0 { 0.0404}0.0818|0.1237| 0.1668[ 00,2104 0.2552 0.3008] 0.3474 0.3950] 0.4435] 0. 4931
1.2 .0452| .09185| .1388! .1871| .23668| .287 «339 « 392 . 4462} .5017| ,5585
1.4 «0823| .1059| .1609 ,.2173| .2752] .3345 ,3985 - 457 +52280] .5878| .6554
1.6 .0642! ,1302| ,1982| .2681| ,.3401F ,4143% .490 569 .6801 .7335) .8194
1.8 .0910§ ,1850} .2823| ,.3829| .4869 ,594% ,7057 .820 « 9400} 1.0633|1,1908
1,9 .1287] ,2624| .4010| ,85447| ,6938{ .8485 1,00 1,17558 1,3479| 1.5271{1.7130
.4 1.0 0569 ,0744] .l1l12 .1509] ,1899] .2294 .269 + 3009 .3509] .39E23| 4341
1.2 «0414] .0834{ .1262] .1697| .2138| .2588 ,3048] .3509 .3980] .4458! ,4943
1.4 L,0479| ,0966| .1465] .1974| .2493| .3023 .3564 .411§ ,4678 ,.5252; ,5837
1.6 .0887| .1189| .1807| .2441} .3091| .3757 .4441] .51421 .588l1] .6598f .7354
1.8 L,0833| .1692| .2580] .3496| .4440{ .541 .6423 7483 8536 .9644]/1,0788
1,9 ,1179| .2402| .3669] ,4982] ,86343] .775 .9212| 1,0728 1,22941 1.3919]1.56604
«5 1.0 .0348| ,0699| .1l055] .14135( 1774 .213 .2503( ,2871 .3240f .3610f .3981
1.2 .0390| ,0785| .ll86] .1591} .2001] .24l .2835] 32894 .3686| ,4117| ,.4551
1,4 .0452| ,0911| .137 .18583{ ,2337] .282 «3327 L3683 <4348 .4871] .5401
1,6 +05854| .1121| .1702] .2295| .2502| .352 . 4159 ,480 5472 .6151| ,6844
1.8 «0787| 1597 .2433F .3294| .4181| ,509 .6039! ,7011] .8012] .9045(1,0109
1.9 .1114| .2268| .3463] .4701| .5982| .730 .8681| 1,010 §1,1576( 1.3101;1, 4680
8 1,0 .0321| .0643| .oe9es| .1287| .1809] .1931 .2251] ,256 .2883| .3195] .3501
1,2 .0389| ,0721| .lo085| ,14%2] .1820| .2189 ,2558| ,292 « 3298 .3668| ,4032
l.4 .0418| ,0837| .1263] ,1695] .2131 ,2571 .3015] ,346 <3914 ,4368| ,4825
h Y ) .0511| .1032| .1583| ,2104| .2655( .32168 .3788| .43689 ,4960] .5562] .6173
1,8 207268 .1472) .2240] .3030| .3842| ,4676 .5535 .641 .7326{ .8250| .9219
1.9 .1028| ,2003| .3194| .4332| .5510] .6727| .7986| ,9289(1,06368]1.2028(1.3471
o7 1.0 ,028s] ,05868] .0846| .ll22| .1392| .1657] .1915! .2165] .2405| .2634| .2850
1.2 +0319| .0637| .0985| .1269{ ,1581} .18 .2192| .2489| ,2779] .3081| .3333
l.4 .0370| .0741] .1114| .1487| .1860] .223 <2603 2972} .3337} .3699] .4055
1.6 .,0455| .0915}f .1382| .1855| .2332| .281 «3301| .3792| .4288| ,4784| .5284
1.8 0647 .1310| .1989 .2685| ,3398| .4128 ,4878] .5642| ,6426| ,7229| ,8051
1,9 .0917]| .1868{ .2843| .3853| ,4896| .5970 .7080| .8226] ,.9409/1,06831i1.1892
8 1.0 .0237| .0466| .0686] ,0898{ ,1093} .1276{ .1442| .l1588; ,1711| .1807{ .l870
1.2 .0267! ,0528| ,0888| .1020| .1253| .1473 .1679] .l868| .2038| .21B6! .2307
1.4 ,0308| .0612| .0912| .1205| .1490| .1767| .2033| ,2287| .2527| .2751] .2955
1,8 0380} ,0760| .1140| .1517| .1893| .2266] .2634] ,2998] .33565| .3705| .4041
1.8 .0541| .1092] .1657| .2223| .2802| .3390] .3987| ,4594! .5208| ,5832| ,6464
1.9 .o7esl ,1863] ,2378| .3212! ,4072| .4957| ,s866| €801 ,7763] ,8752] ,9769
851 1,0 .0208] ,0400{ .0580f .0743] .0888] .1009 .1102] .1162] .l1177| .1l135| .l00e
1,2 .,0231] .0452( .0660| .0854| .1031 .1518] .l488
1.4 +0268| .0529} .0779| .l018; .1243 .2064| ,2139
1.8 .0331| .06s88} .0980| .12968| ,1603 .2959| .3179
1.8 L0474 ,0952] .1436| ,1923) .2414 .4904]{ .5405
1,9 0674 ,13651 ,2073] ,27%8] ,3541 . 7527 .8382
.9 1,0 .0167| .,03185| .0441| .0538] .0600 .0880| .1251
1,2 .0187| .,0358] .0507| ,0832{ ,0725 .0534| .1016
1.4 .0219| ,0422] ,0608f ,0773| .0918 .0911]| ,0514
1,6 0270 ,0831| .0779] .1010| .1224 .1878| .187¢9
1,8 .0390| .0777! .l162| .1543] .1919 .3678f ,3995
1.9 205 A121] 16968 28791 ,2871] 1 5962| L6608
Curvature funotion, C
1,0 | .0402] .0808] .1218] .1683] .2052] L4214 .4660
-] 1,0 .0347{ ,0693] .1039{ ,1384| .1729 . 5421} ,3750
.8 1,0 .0319| ,0636| ,0950] .l261] .1568 .3021| .3290
«7 1.0 .0283| ,0561] ,0833! .l098] ,1355 .2481] .2664
.8 1,0 .0238| ,0460| .0678} ,0876] ,1062 .1679| ,1712

NAT [ONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE I - CONTINUED
BASIC CALCULATIONS BY CURVATURE METHOD FOR FOSITIVE VELOCITY INCREMENTS - CONTINUED

Loge V c.48 |o.52 |0.66 |0.60 |o.64 |o.es |o0.,72 |0.76 |0.80 |[0.84 |[0.88
v-1 0.6161 |0,6820(|0,7507}0,8221{0.8965|0,.9739|1.0544[1.1383|1,2255(1.3164]1,4109
Mo | qrca _— —
-1\
Curvature function, C = ca(§1r%)
o 1.0 |0.5438 [0,5955 {0,6484|0,7023 |0,7575 |0.8138{ 0.8713]0,930110.,9902{1,0516/1.1143
l.2 | .6166| .6761| ,7370| .7994| .8632] .9286| ,9955|1,064 |1.1343(1,2062|1,2798
l.4 | .7247| ,7958| .8689| ,9439|1,0209|1.0100|1.1812|1,2646(1,3502|1.4383|1,5886
1.6 | .9078| .9990|1,0929}/1,1896(1,.2893 |1.3920(1,4978[1,6070}1,7194]|1.8354|1.9549
1,8 }1,3227[1,4593 {1,6006|1,7469 |1.8983 [2,0550|2,.2172|2.3852(|2.5589|2.7390|2,9252
1,8 [1,9058(2,1059 [2,3136|2,5291 |2.7527 [2.9848{3,2256|3,4758|3.7350} 4.0045|4.2839
«4 {1,0 | .4764| .6190| .5620| .6053! .6489| .6927| ,7366| .7808] .8249| .B691| .9132
1,2 | .5435| .5933| .6438| .6949| .7467] .7989] .a@s18| .9052| .9590|1,0132|1.0678
1.4 | .6433] ,7041) .7659| .8289| .8931| .9583|1.0247)1,0022[1,1607|1.2305]1,3012
1.6 | .8129| ,8924| ,9738]1.0573(1,1428|1.2305/1.3202|1,4123(1,5064[1.6030(1.7017
1.8 |1.1968 |1,3187 (1,4446]1,5745 [1,7087 [1.,8472|1,9900]|2,1378|2,2901|2,4476]2,6099
1,9 |21,7350}1,9159|2,1035]2,2979 |2,4994|2,7082]2,9247|3,14933,3817|3,6230}3,8730
5 [ 1,0 | .4352| 4722 .5092| ,5459| .5823( .6185| ,6554| .6878| .7222| ,7559| .7887
1.2 | .4989 ] .5428| .5869| .e8312| .,6755| .7199| .7641| .s808%| ,8522| .8959| .9391
1,4 | 5938} 6482 ,7033| .7590| .B153| .8722| ,9297| .9876[1.0460(1,1048]1,1640
1,86 | 7653 .8276| .9015| .9770|1.0540(1.1326}1,2127|1,2945[1,3778|1,.4629{1,5495
1.8 [1.1206[1,.2337(1,.3502|1,4705 |1,5941 |1.7216]1.8532}1,9887|2,1283|2,2724 |2,4207
1,9 11.631611,801011,9764[2,1581 [2,3463 |2.5412/2,7430/2,952313,1687(3.3933|3.6257
6 1,0 | .3802| 4097 .4383 .46611_.4923 .6183| .5425| ,5652( .5861) ,6052( .6221
1,2 | 4596 .4756| .5111] .5461| .5805] .6140| .6466| .6783| ,7088| .7380| .7657
1,4 | .5283| .5742| .6203| .66682| .,7121] .7579| .8034| .8488| ,8934| ,9378| .9817
1.6 | .6793| ,7423| .,e083| .8711| ,93691.0035/1.0710|1.1395(1,2086(1,2787|1,3496
1.8 |1.02061,1220[1.2263|1,3335 |1.4437{1,5571}1,6735|1,7934|1,9165(2,0433[2,1735
1.9 [1,.496211,6504 1.5199_ 2,1459 |2,322612,5054|2,6948 12,8904 |3,0932 |3,3030
27 | 160 | o537 | «5404| .5548| .5668| 43759 | .3819] .5842[ .5822| 5754| 56209 5435
1.2 | 3594 3843 .4076| .4293 | .4491| .4668| .4B21| ,4949| .5047| 5113} .5145
1.4 | .4406| .4749| .5084| .5408| .5722| .6023) .6310| .6581| .,6836} ,7074| .7292
1.6 | 5787} .6201) 6797} .7302| .7808{ .8314| .8817| .9321| .9821{1,0321(1,0819
1.8 | .8893| .9754/1,0636]1.1529 |1,2462[1.3408}1,4376(1,5369]1,6384(1,7427[1.8495
1.9 |1.5194[1,4538[1.592611,7360 |1.8841 |2,0371{2,1951|2.3586 |2,5272|2.7019 |2,B8824
.8 |1,0 | .1894| .1868| ,1780| .1603| ,1285| .0600| .1160| .1874| .2484| .3060] ,361¢
*t1,2 | .2398| 2452 .2462| 2418 .2309| .2108] .1771| ,1169) ,0057| .1936| 2676
1.4 | 3139 | .3297| .3427| .3524| .3584| .3602] .3568| .3476] ,3313] ,3059| .2684
1.8 | .4376| .4695! ,5000| .5291| .5565| .5822] ,6059| .6276| ,6472| .6581| .6797
1.8 | .7105| ,7754| .8411] .9077| .9752(1.0436/1.1129(1,1834|1,2540]1,3278|1.4020
1,9 |1,0815(1,1891|1,2998(1,4138 [1.5311 (1,6519]1,7764|1,9047 |2,0371|2.1736 [2,3151
. 1.0 | 0725 .0475| 1185| 1645 rtﬁiﬁe 22609 | 5008| o%5 03091 | .4601 | 5117
1,2 | .1%82| .1168| ,0678| ,0895| ,1675| .2154] ,2707! .3255| .%804| .4357| .4613
1.4 | .e169| .2145| .2050| .1es8| .1513] ,0810| .1228( ,2063| ,2763| .3417] ,4050
1,6 | .337¢| .3547| .3688| .3795| .,3862| .3886| ,3858| 3772 ,3617| 3377 .3030
1.8 | .s907| .6408| .6908| .7406| .7904| .8401} .8897| ,9393) ,96889|1.0390|1,0896
1,8 | .9258[1.0156]1,1076{1.2019 [1.2987 |1.3980]1,5000|1,.6050]1,7129]1,.8244 [1.93983
20 | L0 | JIC2B| 2040 | 2448 | 2870 « 3772| 4248 .4738| 5240 5748 . ‘
1.2 | .1445]| .1898| .23%5] .2790] 3262 .3753| .4261] .4785| .5322| ,5869| .6425
1.4 | 0785 .1402! .1917| .2426 | 2944 .3476| .4023| .4586| ,5163| ,5751| .6349
1,6 | .1807| .1808] .1251| 0281 .1397| .2144]| .2815| .5463| ,4105| ,4748| .539%2
1.8 | 42907 4571 .4835| 5078 | .5299| .5496]| .5668| .5815| .5936} .6034| .6110
1,8 | ,7e60| ,7914| .8585] ,9265] ,995611,0659]1.1375]1,2107]1,2865]1,3625 [1,4417
= loge v\" NAT fONAL ADV ISORY
Curvature funotion, C = Co oty COMMITTEE FOR AERONAUT ICS
0 1.0 | .65112| .5568] .6030| .6497| .6969] .7447| .7930| .8420| .8914| .9415| .0922
5 |1.0| .4074] .4395| .4706| .5012]| .5311| .5600f{ .5879| .6147} .6402| .6644| .6870
.6 |1.0| .s548| .3796]| .4031| 4253 | .4459| .4648| .4818] ,4967{ ,5092| ,5192| .5263
7 |1,0| .es28| .2972| .3091| .3185| .3247) .3275| .3263| ,3204] .3089| .2905| ,2631
.8 (i.,0]| .1e99| .1620] .1480] ,1207| .0642]| .0989; .1659] ,2223] ,2751| .3263| ,3766

266
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TABLE I - CONCLUDED
BASIC CALCULATIONS BY CURVATURE METHOD FOR POSITIVE VELOCITY INCREMENTS -~ CONCLUDED

Loge V 0,92 0.96 1.00 1.04 1.08 1.12 1.18 1,20 1.24 l1.28 1.32
V-1 1,5093[1,6117(1.7183(1,8292{1,9447|2.0649|2.1899[2,3201[2,4556|2.5966|2,7434
% L i
T3 Curvature funetion, C = C‘G____‘%)n
[} 1.0 |1.1784]1,.2439(1,3108
1,2 [1,3553|1,4326|1,5118
1.4 |1,6215(1,7168(1,8148
1.6 {2,0781]|2,2061 (|2,3361
1,8 |3.1182]5.3180 |5,5249
1,9 |4,5741 |4,8752]|5,1879
T3 [ IO | 0575 [1.0010 1.0444[1,0675 (1. 130T [ 1. 1721 1. 2155 1. 2555 L. 2055 | 1. 3521 1. 359C |
1.2 [1,1228(1,1780(1.2334|1,2889 |1,3146|1,4002|1,4558}1,5113|1,566511.6216|1,6763
1.4 |1.3730|1.4458]1,5197|1.5945]1.6703|1,747111.8248/1,9033|1,0828{2.0632|2,1444
1,8 [1,802911,9064(2.0123|2,1208[2.2317|2,3452]|2, 4613 2,5802|2,7018(|2,8261(2.95385
1.8 |2,7777|2.9508(3,1296(3,3141(3,5048]3.7016|3,9047]{4,1146|4,3313| 4,.5551] 4,7864
1,9 14,1321 [4,.4008[4,6794|4,9680|5,2675]/5,.5779|5.8096|6,2334|6,5764|6,9582| 7,3104
5 1.0 .8205| ,8%11| .ssos5| .9086( ,9351| .9600] .9831|1,0045|1.0240(1,0416(1.0576
1.2 .9818/1,0241|1.0656(1,1064(1,1464]1.1854|1.2236|1,2608]1,.29070(1.3323} 1,3667
1.4 |1,2235[1.2832(1.3431|1,4053(1,4636/1,5241|1,5847|1,6455|1,7065/1,787711,8294
1,8 |1,.6578{1,7278|1.8194|1,9128|2,0080}2,1051(2,2039{2,3048|2,4078]|2,5131|2,6207
1.8 |2,5737({2.7314(2,8940|5,0616|3,2345|3,.4128|3,5967|3,7866]|3,9526| 4,1845] 4,3940
1,9 |3,8665]4.1160(4,3746| 4,6424{4,.9201|5,2079| 5.6062|5,8152|6,1358{6,4681]6.8129
.6 1,0 | .6368| 6491 .6586] .86s53| .6690| ,6696] .6671| ,6614| .8827| .6414( ,6277
1.2 .7920| .8165| .B8394| .8603] .8795| .8968] .9123| ,0261| 9388 9501} .9610
1.4 |1.0248(1,067%(1.1095/1,1508{1,1914|2.2315|1.2712/1,3105(1.3499|1.3895|1.4298
1.8 [1.4213]1,4939{1.5675|1,8420(1,7176{1.7944]1,8725]1,9523|2,0337}2.1172}2,2051
1,8 |B.3076]2.4456|2,.5876]2,7335 (2,68847{35.0401(3,2004}3,3680|3,5571(3.7139|35,8971
- 1,9 |3.5202|3.7451(3.9781[ 4.2192 |4.4693(4.7284|4.9968|65,2753 [5.5642)|5,8638)6.1760
7 | 1,0 | .3438[ ,3158] .2759| .2185( .1206| .1521| .2544] .3311
1,2 | .5137) .5088| ,4994] ,4851| ,4657| ,4407| .4098| ,3725
1.4 .7491| ,7670| ,7831| ,7972| ,8098} .8211| ,.8315| ,84l8
1,6 (1,1316/(1,181311,2310{1,281111.3316(1,3829}1,4353|1,4892
1.8 [1,9592)2.0719(2,1878]2,3071 [2,4302(2,5573]12,6886]|2,8246
- 1.9 13,069215,2626)3,46283,670113,885114,108114,3392) 4,5704
8 1.0 «4170| 4714} 5851 ,8778( .6283
1,2 +3341| .3970) .4574| .8189| ,5728
1.4 «2120| ,1107] .1609| .2629! 3419
1.8 .6929] 7043 .7142] ,7229| ,7311
1,8 (1.4781(1,5561(|1,6363|1,7190{1,8043
1,9 | 2,4611(2,6123 (2.7690|2,.9314[3,1002
.85 1.0 .5658| .6153| ,6668
1,2 <5472 | .6031| ,6588
1.4 .4672] .,5284| ,5888
1.6 .2530| ,1756| .0859
1,8 11.,1410|1,1036(1.2478
1,9 [2,0582(2,1814|2,3082
) %.g » 8780 .7292
6983 ] 754
1.4 | .7560] .s126 NAT IONAL ADV ISORY
1,86 | .6038] .6684 COMMITTEE FOR AERONAUTICS
1.8 .61681 ,6214 .
1,9 |1,85236]1,6088
oLe V\!
curvaturs funstiom, C = c,(l__s__
loge V.
[ T.0 [ 1.0455] L. 0WE4] I,
5 | 1.0| .7078| .7269| ,7439 ,.7586| ,771Q% .7804 .7879] .7921| .7932] .7913 .7862
.6 |1,0| .5303} ,s308{ ,5275| .5201] .5081| .4911] ,4686] ,4399] ,4044] .3607| .3067
.7 | 1.0 .2230] .1604| .0534] .1€94| .2702| .3374] .3970| .4512
«8 | 1,0 | ..4262] .4751| .5229] ,.5604| ,6143
Loge V 1.36 1.40 1,44 l.48 1.52 1.56 1,60 1,64 1l.68 1,72
I -1 2.8962| 3.05523,2207| T,3029|3,5722| 3.7586{ 3.8530| 4.1552| 4.5656| 4,5845
¥o I i #TE:
Curveture function, C = ¢ H 3
«4 | 1,0 }11,4061]|1.4413|1, 4753|1,5081|1,5398]1,5705{ 1.6003}1,6295| 1,6585[.1,687¢
1,2 |1,7308|1,7848|1,8386|1,8920}1,9453}1,.9985K 2,0518]2,1055{ 2.1597}2,2149|
1.4 | 2.2265|2,3096|2,.3937|2,4788|2,.5652]| 2,6628] 2,7420} 2,8328{ 2,90258{ 3,021C
1,8 |3.0838]|3,.2172}3,3539(5,4938|3.6375|3,7849 3,9503] 4,0021f 4,2524] 4. 4175
1,8 | 5.0253{5.2721]|5.6272] 5,7909|6,0636| 6,345 8,6373| 6,9597| 7.2522| 7.5761
1,9 7.&%1%9&6_& 8,512118,942916,38091 ex7ll0, 3354 A353N1,.3540111,. 8923
5 1.0 | 1,0719]1,0846(1,0964|1.1074|1,1181
1.2 | 1.,4005|1, 433811 ,4668] 1.5000|1,5337
1.4 |-1,8916]1,.9546[2.0188{ 2.0838|2,.1507
1,8 |2,7309|2,8433]|2.9599| 5,0792|3,2022
- 1.8 | 4.6102| 4.8338|5,0848] 5,3040)5.5518
1,9 | 7.,1707|7.5417|7.9269] 8,3265)|8,7415
oge V!
=
Curvature function, C c‘G;sTv)
5 1,0 | 0,77801{0,76869]|0,7531} 0,7371|0,7185




TABLE II

~ NACA TN No.

BASIC CALCULATIONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INCREMENTS

Loge V -0.04 |-0.12 |-0.20 |-0.28 |-0.36 [=0.44 [-0.52 |-0.50
v-1 -0.039240.1131 10,1813 }0.2442 Q. 3023 }0. 356010.40551+0.4512
Mo J?E;
Curvatur = v -1\"
e function, C = C(V'_T)
0 1.0 [0.0396]0, 1165 ]0.1904]0.2615 |0.3299]0.3958] 0.4692] 0.5203)
1.2 | .0443| .1299| .2118| .2902 | .3654| .4374| .50658] .5729
1.4 | .0510] .1494 | .2429| .3320| .4169| .4979] .5751| .6488
1.6 | .0624| .1820| .2950| .4018 | .5029| .5986| .6892| .7751
1.8 | .0880| .2655 | .4124] .5592 | .6967| .8256| .9465]1.0599
1.9 | .1243] .3597] .5787) .76824 | .9721[1.1486{1.3131|1.4663
4.4 [1.0 | .0366] .1077| .1767| .2437 | .3086| .5716] .4325] .4915
l.2 | .0406| .1199| .1963] .2700| .3411| .4097| .4759! .5396
l.4 | 0489 .1377| .2248| .3082 | .3883| .4650( .5385! .6090
1.6 | .0573| .1676} .2724! .3720| .4667| .5568| .6425| .7241
1.8 | .0808| .2348| .3796{ .5156| .6434| .7635] .8666| .9829
1.9 | .1140| .3302| .5317| .7195| .8947[1.0680]1.2105{1.35628
o5 | 140 | .0345| .1022| .1684| .2330| .2958| .3570] .4165| .4743
1.2 | .0385| .1138| .1869| .2578| .3265| .3930] .4574| .5197
1.4 | .0444| .1307| .2138| .2039] .3710| .4451] .5185| .5852
1.6 | .0641| .1588( .2587| .3540] .4448| .5316| .6144| .6934
1.8 | .0764]| .2223| .3598| .4892] .6112| .7261]| .8344| .9366
1.9 | .1078( .3123| .5038| .6815| .8480|1.0034|1.1487]1.2845
.6 |1,0 | .0319| .0953| .1577| .2191| .2793| .3362| .2958| .4521
1.2 | .0386! .1059| .1748| .2420] .3076| .3716| .4337| .4942
1.4 | .0411] .1216| .1998| .2753| .3486| .4196] .4882] .5545
1.8 | .0501] .1475| .2409| .3306| .4166| .4990| .5780| .6537
1.8 | .0708| .2060| .3340| .4550| .5693| .6774| .7797| .8764
1.9 | .0996| .2890| .4662| .6319| .7870| .9322{1.0681[1.1954
7 | 1.0 | .0286| .0882| .1438| .2012| .2581]| .3143] .3697| .4240
1.2 | .0319| .0958{ .1591| .2217| .2834| .3441| .4035( .4617
1.4 | .0387| .1096| .1812| .2513| .3199| .3868| .4520| .5153
1.6 | .0448] .1327| .2179| .3004| .3801} .4571| .5314| .e031
1.8 | .0631| .1848| .3005| .4106| .5162| .6147! .7092| .7991
1.9 { .0890| .2687| .4180| .5675| .7080| .8400| .9639|1.0804
.8 | 1.0 | .0243] .0o748| .1261| .1i784| .2312| .2840| .3368] .3887
1.2 | .0270| .0825| .1389| .1957| .2526| .3092| .3653| .4207
1.4 | .0312| .0941| .1574| .2206| .2831] .3450| .4069| .4658
1.8 | .0380] .1135| .1880| .2613| .3331| .4033| .4718] .5384
1.8 ] .0532| .1568| .2566| .3525| .4447| 5331 .6179| .6991
1.9 | ,0749| .2186| .3544| .4828]| .6042| .7190| .8675| .9301
.85 | 1.0 | .0216| .0889| .1147] .18641]| .2146| .2664| .0164| .3673
1.2 | .0240| .0740| .1280| .1793| .2334| .2877| .3419] .3958
1.4 | +0275| .0B41| .1422| .2010| .2601} .3188| .3771] 4349
1,6 | .0335| .1010| .1689| .2359| .3030| .3691| .4341] .4978
1.8 | .0469| .1389] .2288| .3166| .4000! .4817| .5605! .6366
1.9 | .0659| .1928| .3137| .4287| .5382| .6422] .7412] .8352
29 | 1.0 | <0182| .O580| .1015] <1475 | 1002 «244L| 2085 3451
1.2 | .0203| .0638| .1109| .1603| .2112| .2630| .3152f .3675
1.4 | .0230| .0722| .1242| .1782| .2334| .2891| .3450| .4007
1.6 | .0279| .0860{ .1460| .2072| .2688( .3305| .3918| .4524
1.8 | .0390| .1170| .1948| .2712| .3466| .4205| .4927| .5630
1.9 | .0548| .1812/| .2639| .2628| .4580] .5494] .6371| .7212
NAT [ONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Logg V 0,08 [=0.18 |=0.24 [~0.32 |=0,40 |=0.,48 | -0.56 |-0.64
v -1 -0.0769-0.1479 0. 2134 }-0, 2739 |0, 3297 |-0. 3812}-0. 4288|-0. 4727
Mo \ R .
Curvature function, C = (iOge v)ﬂ
og
) 0.,0793] 0.1560] 0.2331] 0.3078] 0. 3513]
5 .0693| .1382] ,2088| .2750| .3425
8 .0843| .1291| .1940] .2890| .3237
.7 .0880| .1172| .1775| .2384| .2098
.8 .0496] .1020| .1563] .2122| .2692

1328
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NACA TN No. 1328

TABLE II = CONCLUDED
BASIC CALCULATTONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INCREMENTS = CONCLUDED

Toge V =0,68 |~0.76 |=0.84 | =0.92 | -1,00 | =1,08 [ -1,16 [ =1.24 ]
V-l -0, 493410, 532310, 5683/0, 60150, 6321[-0, 66040, 88650, 7108

“ol'ﬂ m;

- 1\N
Curvature function, C = C‘(H

8.5792]0. 6361 0. 6909]0.7459]0,7051] 0. B445| 0. 8924] 0. 9387|
.6364| ,6976| ,75684| .8120] ,8673| .9197| ,9702|1,0189
.7192| ,7864} ,8508| ,9123| .9713|1.0277}1,0819]1,1339
.8566) ,9339)1,0073|1,0770]/1,1434|1,2065|1,2668]1,3239

1.1664]1,2664(1,3603|1,4487(1,5319{1,6102|1,6840}1,7537

1.6090{1,7422 |11,86863]/1,982312,0905/2,1915] 2,2860|2,3744]

o4

.8017{ ,8757) ,9462|1,0134|1,0775/1,1387|1,1872(1,2530f
1,0830(1,1774|1.2662|1,.3501(1,4292|1,5089| 1,5745|1.641
1,485711,6099]1,7259]1,8%4411,93%8!2 08 98! 2,2031

«5304| ,5850f ,8379| .6894| ,7393| .7877 .8348| ,88085

.5800| ,6383| ,6947| ,7492| ,.8020] .8530| ,9024 .9503

«6812| ,7148| ,775%| .8348| .8014| .9459] ,9985|1,049
+«7688| .8408| ,9095| .9753|1,0381|1,0982|1,1587|1,210
1.032911,1239[1,.2097{1.2009|1,35676}1,4402]1,5089]1,573%
1,411411,530211,6413}11,745411,68428/1,9342|2,0198/2,1002

+85070| .856085] .&8128} .6633| ,7127| ,7607
.3529 ) ,8099| ..6882{ ,7188| .7708| ,8213)| ,8702| ,9176
.6186| ,6803| ,7400| ,7976| ,8632| ,908%| ,.9587|1,0088
.7268| ,7958| ,8624| ,9263| ,9875]|1,0463|1,1026}1,1567
«968011,05468[1,1366{1,2144(1.2881(1.3579|1,4242|1,4872
1,35147(1,4285(1,5314/1,6298(1,7221)1,.8088(1,8903}1,966%9
= 72es|

[y ] Wy S e I N el

r

L]
DOORANVOVDORANOC|OOALARDOOO RO NROIDOLNOIODORMNO|[OORANOIOOOHLNDO
.
N
)
-

.5188| 5739} ,8279| .e805| ,7316| ,7814| ,8298| .8768
.5769| .6386| .6945| ,73068| .8080| ,8577| .9087| ,9581
.8721| ,7388} ,8026| .8642| .,9234| ,9806]1,0355(1,0884
l.gagg .gggg i.g4gg %.1153 1,1865{1,2530 1.5%68 1.5;63
,1899 11, «38 . 4810 [1.5668[1,6477]1,7240(1,795
TR i) .546§'LM [~ EXBO| L BBEI[ L T3IIT L TTET
.47838| .s288| .8813| ,e327| .eez0}| .7320| .7798| .8285
.5243| .5818| 6375 ,6919| .7449]| .7968| ,8466| 8054
.6032| .66680| ,7269| ,7859| ,8430| .8982| ,9516]1,0033
.7770| 85181 ,9229| ,9913{1.0567[1,1194(1.1794|1.2369
1,0271(1,11861,2087[1,2878 |1.36861,4393|1,5091)1,8753
L4178 ,4679| .B172| .5658| .6136| .6608| ,7062| ,7512
4491 ,B5017| 5534 .6042| .6839| .7026| ,7E02| ,7987
.4918| .5477| .e0e5| .6861| ,7084| .7594| .m001] ,a875
.5601] ,6209| .e800| 7378} .7935| .8477| .9003| .9514
.g%gg 1'3383 l.gggg 1.3%4{ .976; 1.037; %.ogss 1.151:
N N ,167111,2401/1,309 3 1,438
506 <4419 '4908| (63881 .5B62| L6388 _".evj'se T 9236
.4198| .4711| .5220| ,5722| .6215| .86899| ,7173| ,7637
4589 | ,5104( .5841| .é188| .e684| .7189| ,7682| .8184
.6121| ,8707| .6281| .8842| ,7389( .7922| .8441] ,8948
8314 ,8977| .7621| .8243| 8845 .9427] .9989(1,0832
.8018| .8790| ,9529|1,0257}1,0913[1,.15€1/1,2180|1,2774|

NAT IONAL ADVISORY
COMMITTEE FOR AERONAUTICS

«88

(R T e e Y e I

Loge V .72 ) .88 [=0,06
V-1 0, 5133 {0, 5507|~0. 5858 -0, 8171
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Figure 1.- Compressible potential flow past symmetrical airfoll.

"ON NL VOV¥N

geel

IES




Alrfoil velocity increment, V-1
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Airfoll curvature parameter, {¥Ca
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(a) fdv = fqdvy. {b) curvature functions.

Flgure 24,- Correspondence between compressible and ineompressible flow for
compressibility correction rule of Greene,

"ON NL YOVN

=A

¥z “B14




